Researchers Discover Signaling Pathway in Biofilm Formation

Dentistry Today


After studying how oral bacteria adhere to and develop biofilms in the oral cavity, researchers at the University of Minnesota have discovered a signaling pathway that regulates surface proteins on bacteria that can lead to new targets for antibiotics. 

The researchers wanted to learn whether and how bacterial cells might adjust their adhesive surface proteins and found a circuit embedded in the cell membrane that can signal for changes in the surface adhesive proteins. 

This circuit appears to be conserved among a subset of Gram-positive bacteria. The intramembrane bacterial signaling system calls for different surface proteins to compensate in the absence of primary surface proteins. 

This mechanism provides compensatory biofilm formation and appears to function in microbial communities in vitro and in the human mouth. Genes encoding surface adhesive proteins differ when the bacteria are recovered from saliva versus dental plaque in the same person at the same time. 

When activated, this circuit rescued biofilm formation, which is when microorganisms strongly attach and grow on a surface, helping bacteria to survive in dental plaque. Overall, the researchers found: 

  • A previously unrecognized signaling system within the cell membrane regulates surface adhesive protein gene expression.
  • The signaling system calls for the regulation of different surface proteins as the available pool of surface proteins is altered. 
  • The regulatory signal is a conserved amino acid sequence found in fragments cleaved from the surface adhesive proteins. When the fragment is present in the membrane, the system is “off.” When it is absent, the system is “on,” and alternative surface proteins are expressed.
  • This intramembrane signaling system appears to compensate as a failsafe mechanism to edit surface proteins and enable the bacteria to adhere to and colonize different body surfaces. 

“Discovering this previously unknown signaling pathway that regulates surface proteins on bacteria may help us to understand better how complex microbial communities develop and offer new targets for antibiotics,” said Mark Herzberg, DDS, PhD, a professor at the University of Minnesota School of Dentistry and a member of the Masonic Cancer Center.

The study, “An Intramembrane Sensory Circuit Monitors Sortase A-Mediated Processing of Streptococcal Adhesins,” was published in Science Signaling.

Related Articles

Allogenic Stem Cells Improve Regenerative Therapy for Periodontitis

Antibacterial Nanoparticles Improve Adhesive Resins

Plant Cellulose May Improve Dental Implant Treatment